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Abstract. Simulations based on random multiplicative
cascade models are used to investigate the uncertainty in
estimates of parameters characterizing the multiscaling
nature of rainfall time series. The principal parameters
used and discussed are the spectral exponent, 5, and the
K(g) function which characterizes the scaling of the
moments. By simulating a large number of series, the
sampling variability of parameter estimates in relation to
the length of the time series is assessed and found to be in
excess of 10%-20% for fields less than ~10% points in
length. The issue of long time series which may consist of
physically distinct processes with different statistics is
addressed and it is shown that highly variable data mixed
with an equal amount of less variable data of similar
strength is dominated entirely by the statistics of the highly
variable data. The effects on the estimates of £ and K(g)
with the addition of white noise or the tipping bucket effect
(quantization) can also be significant, particularly following
gradient transformations. Some high resolution rainfall
data are also analyzed to illustrate how a single
instrumental glitch can strongly bias results and how
mixing physically different processes together can lead to
incorrect conclusions.

1 Introduction

Many geophysical fields appear geometrically complex
Jinvolving high variability, intermittency, and the frequent
occurrence of extreme values. Multiscaling analysis, on the
other hand, presents a variety of techniques which can
quantify these otherwise subjective properties.  The
multiscaling analysis of geophysical fields has become
increasingly attractive to many researchers as a means of
parameterizing the degree of intermittency, smoothness,
and sometimes the extreme value statistics of highly
variable fields (see Foufoula-Georgiou and Krajewski
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(1995) and Lovejoy and Schertzer {1995} for useful
reviews). With the increasing use of these techniques it has
become necessary to address the issues of robustness and
the effects of noise on parameter estimates. In this paper
random multiplicative cascade simulations are used to
estimate how much uncertainty one can expect in the
estimate of a parameter based on a single realization or
sample of a field. A significant amount of uncertainty can
be attributed to the fact that different realizations of a fixed
process can lead to different parameter estimates as a
consequence of their random nature.

Multiscaling analysis requires long data records to reduce
the uncertainty in parameter estimates. On the other hand,
rainfall processes are rarely stationary over long periods of
time in the sense that rain associated with synoptic scale
systems generally take less than one day to pass over a
point. A careless combination of rainfall data into a single
long time series may include a mixture of significantly
different rainfall processes, each process with a potentiaily
different multiscaling flavor. It is necessary, therefore, to
assess the impact of mixing different rainfall processes on
the estimated multiscaling parameters.

Rainfall estimates are also franght with measurement
errors and insttumentation artifacts. While working with
imperfect instruments, it is important that the impact of
these imperfections on the estimates of parameters used to
describe the multiscaling behavior of the rainfields be
clearly understood. This is particularly the case when
comparing statistics of data from different instruments such
as radar and rain gauges.

The overall objective of this paper is, therefore, to assess
in the context of multiscaling time series:

1) the extent of the uncertainty of parameter estimates in
relation to the length of data sequences,

2) the effect on parameter estimates of mixing physically
distinct processes,

3) and the biases in parameter estimates due to noise and
instrumental artifacts.
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Understanding these three technicalities is necessary in
order to determine whether an observed difference in
parameters from two data sets is likely to be significant or
not.

1.1 Analysis Framework and Terminology

The analysis framework used here focuses on two
properties of multiscaling fields. TFirstly, a multiscaling
field must have a Fourier power spectrum which is scaling
or equivalently has the power-law form,

P(f)~ £8, o)

over a certain range of scales. # estimated from rainfall
time series have been observed to fall in a range between
approximately 0.3 and 1.7 {Georgakakos et al., 1994;
Lovejoy and Scherzier, 1995; Harris et al, 1996).
Secondly, a field, R, is said to be multiscaling if its qth
order moments behave as,

<R()7> ~ (U Ty K@), (2)

where ¢ is the time resolution of the time series and T is the
total time length (see Davis et al. (1994) for an instructive
paper on multiscaling and the estimation of K(g) which
characterizes the multiscaling behavior of a field).

While the relation (2) is sufficient to determine a field as
multiscaling, spectral analysis and, more specifically, the
value of the spectral exponent, 4, play an important role in
the  multiscaling  characterization of  rainfields.
Theoretically it can be shown that fields which are
multiscaling (i.e., obey (2) over a finite range) have f < |
(e.g., Davis et al, 1994). Rainfields, on the other hand,
often have £ > | and in this case cannot be muitiscaling
(Menabde et al., 1997). Rainfields with 8> 1 may have
multiscaling generalized structure functions,

<|R(t+D)-R()g> ~ r€le) 3)

where zis the time lag between two measurements in a time
series, R(#). Fields having the property (3) over a finite
range of lag, r, are referred to as multiaffine (Benzi et al,,
1993). In practice when a multiaffine field, R, with §> 1
undergoes a small scale absolute gradient transformation
defined by

ARLE) = |R(t+)-R(t)], {4

the resulting AR field will be multiscaling and have a
scaling power spectrum with #< 1. In this case there exists
a theoretical relation between ¢{g) for the multiaffine field
and K(g) for its gradients (Vainshtein, et al, 1994;
Menabde et al., 1997),

Kig) + ¢lg) = g &)

K(g) is thus the main statistical characterization of
multiscaling fields and is often used to characterize
multiaffine fields as well. Sometimes one refers to the K(q)
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function of a multiaffine field. In this case it is understood
that the K(g) characterizes the absolute gradient field,
AR (¢) of the multiaffine field, R(¥).

The terminology “broad sense” stationarity and
nonstationarity to describe fields with # <1 and g > 1,
respectively has become popular recently (e.g., Davis et al.,
1996b, p.108 and references therein) and can be used in
place of the terms multiscaling and multiaffine used here.
However this use of the words stationary and nonstationary
is subject to an argument in semantics as it conflicts with
previous and more accepted definitions of stationarity. For
example, the Wiener-Khinchin theory of covariance and
spectrum is applicable to stationary funmctions only (e.g.,
Mandelbrot, 1983, p. 351} and strictly speaking the usual
Fourier power specttum is not defined for nonstationary
signals.  Furthermore, the present authors refer to an
interesting example of a stationary random process
(Yaglom, 1987, p. 139) yet which has an asymptotically
scaling power spectrum with > 1 (Menabde et al., 1997).
In essence, however, the authors mean the same thing by
multiscaling and multiaffine here as the respective broad
sense terms stationary and nonstationary used elsewhere
{Davis et al., 1996b, 1994; Lavailée et al., 1993) and regard
the nomenclature as still being in a state of flux.

An incentive for the multiscaling characterization of
fields is that it allows one to build a cascade model which is
able to reproduce the observed statistical characteristics of
the field as embodied in the exponent, K(g). K(g) is a
continuous function, thus in principle, requiring an infinite
number of parameters. It is, however, possible to construct
models characterized by a few parameters for which one
can derive analytical forms for the K(g) function involving
the same modeling parameters. By fitting an analytical
form to the observed data we can in principle retrieve one
or more modeling parameters. The parameters analyzed in
this paper are, therefore, the spectral exponent, £, K(g), and
the parameter(s) used to characterize K(g).

At this time the most common model is based on discrete
random multiplicative cascades. Other models include the
continuous Universal Multifractals of Schertzer and
Lovejoy (1987) and recent models which employ wavelet
decomposition (Perica and Foufoula-Georgiou, 1996). In
this paper only discrete multiplicative cascade models are
used.

1.2 Overview

This paper is organized as follows: The next section
discusses specific details concerning f and K(g) estimation
as well as the types of simulations used. Section 3
examines sampling variability in relation to time series
length. Long time series are desirable from a statistical
point of view yet analyzing time series long enough to
encompass meteorologically different processes with
different statistics may bias results. This issue of mixing



Harris et al.: Multiscaling analysis of rainfall time series

physically distinct processes with differing statistics is
treated in Section 4. Noises and instrumental artifacts are
discussed in Section 5. There are three effects considered
in this section: The effect of quantization of data, additive
white noise, and the effect of the previous two artifacts
following the small scale absolute gradient transformation
of a field. Illustrations of the effect of instrumental noise
and artifacts are also provided using rain gauge and radar
time series. Section 6 summarizes the important points
made in the text and concludes the paper. An appendix
contains a brief overview of some properties of canonical
cascades pertinent to the analysis of such cascades in this
paper.

2 Analysis Methods and Simulation
2.1 Spectral Analysis

A first step in the analysis of fields that may display
multiscaling properties is to examine the behavior of the
Fourier power spectrum. A scaling behavior of the power
spectrum implies that there are no characteristic time scales,
and, therefore, the time series may be statistically self-
similar. In reality scaling is never perfect, and is usually
restricted within a limited range which can be estimated
from the power spectrum.

There are two methods used in this paper of reducing
noise in the estimation of the power spectrum, and hence f.
The first method employs the subdivision of the time series
into smaller intervals. The spectrum of each interval is then
averaged together to provide a power spectral density
(PSD) with lower variance albeit with a smaller frequency
range over which to observe scaling. This process, referred
to here as subdivision, is common in spectral analysis and
is done automatically using the SPCTRM.C program in
Press et al. (1992), with no windowing.

The second method used in this paper to display a noise
reduced spectrum over a larger frequency range is called
octave binning (Davis et al., 1996). It is less commeon in
spectral analysis because it reduces spectral resolution, an
item of little concern for scaling, and is thus described here
briefly for convenience (see Davis et al. (1996) for an
extensive discussion).

For octave binning, the PSD is computed using
SPCTRM.C (Press et al.,, 1992) with parameter £ = 1, so
that the time series is subdivided into two subsections. The
PSD is then averaged into bins spaced logarithmically in
frequency according to:

jm:L Y fi s m=12,. logy(N)-2. (6)

and the power spectrum is averaged into bins according to
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Fig. 1. Sample spectra computed from a 8192 point cascade simulation.
The two plots represent the two methods of spectral noise reduction. The
fine spectrum is the resull of subdividing the caseade into 16 pieces and
averaging the spectrum of cach piece. The octave binned spectrum is
computed as desctibed in the text. Only the filled points are included in
the regression. The crror bars are not used in the fitting procedure and are
there for reference only. The cascade was constructed wsing the bounded
log-normal model described in Section 2.3 with o= 0.8 and F=0.3.
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and the variance in £, for each bin is given by

P(f)?,  m=0
2 2m+1_l
Op = —2 . (8)
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Each bin involves the averaging of 2" values, where m
increases logarithmically with frequency for m >> 1. An
unweighted regression on the data from (6) and (7} is used
toestimate f.

Fig. 1 shows an examptle of the two methods of spectrum
estimation. Since Fig. 1 plots the logarithm of the power
spectrum, the error bars shown in Fig. 1 are related to (3)
by using the propagation of errors for logarithms (e.g.,
Taylor, 1982, Section 3.5),

Frog,o P — O P I Py In(10}) . 9

From an estimation point of view, a least squares
regression estimate of § based on the subdivided spectra
will be heavily biased towards the data at the high
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frequency end of the spectra since this is where the bulk of
the data are to be found. Fig. 1 shows such a bias in the
spectra of a cascade where S = 1.28 for the subdivided
spectrum and £ = 1.40 for the octave binned spectrum.
Octave binning has the effect of giving equal weight to all
frequencies and would therefore provide estimates of (7 that
are representative of the entire scaling range. The
subdivided (non-binned) spectra are optimal for locating
possible breaks in the scaling regime because of their high
resolution.

2.2 Moment Scaling

Moment scaling analysis focuses upon K(g) and its
estimation which is usually followed by parameterizing
K(g) via least squares fitting of an analytical function,
K, (g). Estimation simply involves finding the 4th moments
of the field at the finest resolution and then degrading the
field resolution by averaging nearest neighbors and re-
computing the moments at this lower resolution. The K(g)
function is thus evaluated by plotting the gth moment
against the field resolution on a log-log plot and K(g) is
given by the slope of a linear regression through a scaling
range. This presupposes the existence of a finite scaling
range between two scales referred to here as f,,;, and f,,,,.
It should be stressed that K(g) is meaningless except over
this finite scaling range and so this scaling range must be
quoted for any K{g) function or K(g) parameterization.
This is especially important as some geophysical fields
(e.g., clouds (Davis et al, 1997) and possibly rainfall
(Fabry, 1996)) may have more than one scaling range each
with different K{(g). The scaling range which is
conveniently quantified by the ratio, #,,,/tmin (expressed in
orders of magnitude), is more common as an indicator of
the degree of scaling. Davis et al. (1996b) have established
a criterion based on f,,/ty;, With which to determine
whether a field should be referred to as multiscaling or not.
Other caveats regarding the reference to a field with having
Imax/tmin s scaling exist in the literature (e.g., Hamburger
etal., 1996).

In principle, K(g) is an unknown function defined for all
g € (-0, +oo) with K(0) = K(1) = 0 and thus requires an
infinite number of parameters to describe. In practice,
however, curve fitting methods can be used to parameterize
K(g) and analytical forms, K,(g), can be theoretically
derived for specific cascade models such as the log-normal
model below and other models (Gupta and Waymire, 1993;
Schertzer and Lovejoy, 1987) which are often based on
only one or two parameters. When fitting K, (¢) to the
observed K(g), finite data length and the presence of noises
and zeroes, place restrictions on the range of ¢ over which
K,(g) may be reasonably fit to the computed K(g). In the
case of the presence of zeroes, K{g) cannot be computed at
all for negative ¢ and one will also have K(0) < 0, while the
theoretical forms have K (0) = 0. This means that there
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will be some gy, > 0 and K,(g) cannot be realistically fit to
K(q) for ¢ < g, Low level noise contributes greatly to
the low order moments (g << 1) and will similarly
introduce a g, below which K(g) may deviate strongly
from any K,(q) or bias parameter estimates. In the absence
of zeroes gy,;,; can obviously be negative. In any case, K(g)
for ¢ < g, reflects either measurement effects rather than
the real field or the presence of zeroes, which may be real,
yet for which cascades without an atom at zero cannot
model. This is addressed further below. Since rain
measurements very often contain zeroes, g is restricted here
to non-negative values.

In addition to a lower limit on g, there is an upper limit
on g above which K{g) becomes increasingly linear. This is
a result of the fact that taking the gth power of a field for ¢
>> 1 enhances the relative contribution to the gth moment
of the few, or even single, most extreme vaiue(s) of the
field. Clearly, fitting a curved function to the observed
K{(g}, as will be done below, requires limiting the maximum
value of g, referred to here as gp,,,, up to which the fit is
performed. The value of g,,,, is important for fitting the
analytical K,(g) to the observed K(g). For example, the
analytical form, K,(g), for a log-normal cascade process is
a parabola (see below) and fitting a parabola to a curve
which is linear for g >> g,,,, biases the parameter estimate
characterizing the curvature of the parabola. In previous
works, a maximum value of g was derived within the
framework of singular measures (Schertzer and l.ovejoy,
1992) and referred to as g, and is dependent on the number
of samples or realizations used to compute K(g) and if the
model parameters are known (i.e., in the case of a cascade
field} a simple relation for ¢, may be derived (e.g., see
Lovejoy and Schertzer (1995) for the case of the log-stable
model) and in general provides a good estimate. One of the
matters addressed below, however, is that g,,,, is not only
dependent on the amount of individual realizations but also
strongly dependent on the specific data set (realization)
from which K(q) is estimated.

Since gy, depends on the presence of extreme values in
the data set and since the ratio of the maximum to the mean
may fluctuate between data sets with similar multiscaling
properties (in the statistical sense), so too will g, (see
Section 3.2 below). There is thus an advantage to estimate
gmax for a particular data set before fitting K {g) with the
added incentive that g, is in itself and interesting
property of the field. There is no universally accepted
manner in which to estimate g,,,, but a few simple methods
explored for this study are briefly described here, two of
which are used and discussed further below in Section 3.2.

One method involves computing K(g) up to a very large
value of ¢ and then begin by fitting K,(g) to K{(g) over a
small range of ¢ about the mean, ¢ = 1, for example. The
process continues by iteratively increasing the range by a
small amount and repeating the fit each time until such time
that K (g) differs from K(g) by a certain amount. This
method can, in principle, also be used to estimate g,,;, as
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well as g,,,,. Another simple method involves establishing
a criterion based on the original data based on how much
the data contributes to each moment. For example, gn.,
can be the moment for which the top 10% of the data
contributes to 90% of the moment. Use of such a criterion
also gave reasonable results. Other methods investigated
but not used below reduce the problem to one of nonlinear
regression. One may employ change-point fitting methods
in which one fits K (g) to K{q) for ¢ < ¢, and fits a
straight line, ag + b, to K(g) for ¢ > gpuq with the
requirement that & = K’(¢,,4). In this case, however, one
should expect a regime near g, with significant fit
residuals where K(g) is not exactly linear yet is not well
described by K (g). Along the same lines but more
complex, one can fit a function, ¥ = K )9 - qma) +
a(g - BY(1 - g - gae)) where £x) is a continuous function
fix) ~ | for x << 0, fix) ~ 0 for x >> 0 and a, b are
additional fit parameters. This also gave inconsistent
results, occasionally giving noticeable residuals.

2.3 Cascade Simulations

There are many cascade models which can be used for this
purpose, and some have greater success than others at
reproducing the particular characteristics of rainfall. The
point to be made here, however, is that the fields which are
constructed below provide plausible time series of rainfall
which could have occurred in reality in the sense that they
reproduce the statistical features being studied. Simplicity
was a factor in the choice of models so as not to be
distracted from the task at hand which is to investigate the
certainty of estimated parameters and their sensitivity to
measurement effects.

The one dimensional random multiplicative cascades
used here employ the usual construction method found
elsewhere in the literature (e.g., Gupta and Waymire, 1993;
Davis et al., 1994; Harris et al., 1996) in which an interval
with mean, Ry, is subdivided into, say, two halves and each
half is multiplied by random weights {1} and W(2),
respectively. Each half is then divided again into halves
and multiplied again by weights. This procedure is
repeated for as many steps as desired.

Two types of cascade are considered which enable to
simulate either multiscaling or multiaffine fields. In the
first case when the random weights, ¥, are independent and
identically distributed (iid.) at each step in the cascade the
 resulting  field will be statistically self-similar by
construction and will be multiscating. For the purposes of
illustration in this paper a simple case is sufficient in which
the random weights are log-normally distributed.

Multiaffine fields are harder to create and current
methods of modeling them are not ideal. Two methods
found in the literature are frequently used to generate such
fields: Firstly the method of power-law filtering or H-
filtering (Schertzer and Lovejoy, 1987; Lavallée et al.,
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1993; Davis et al,, 1996b) and secondly the method of
bounded cascades (Cahalan et al., 1989; Marshak et al.,
1994 and references within). The first is analogous to a
popular algorithm for generating fractional Brownian
motion where a field is transformed in three steps by taking
1) the Fourier transform of a field, 2) multiplying each
Fourier frequency component by f#7, H > 0, and then 3)
taking the inverse Fourier transform.

The other method is more recent and more direct in that
the cascade method itself is altered to produce fields with
[ 1 directly without the need to work in Fourier space. In
essence the generator is changed at cach step thereby
producing a progressively smoother signal as the cascade
progresses to smaller scales. This has to be done in a
fashion so as to retain the scaling of the power spectrum.
This can be accomplished by decreasing the variance of W
in a power law fashion with each successive step in the
cascade. Conceptually, the bounded cascades reflect the
observation that most rainfall (i.e, that with g > 1)
variability decreases with scale and consequently has a
steeper power spectrum than multiscaling fields.

In practice both methods produce ficlds whose absolute
gradients are not perfectly multiscaling over the entire
range of scales modeled but show a reasonable degree of
scaling over a limited range of over two orders of
magnitude for a field which spans nearly four orders of
magnifude (see below). Both the power law filtering
method and the bounded cascade methods described above
were assessed and found to give similar limited scaling
ranges.

For simplicity, the model used in all the cases studied
here is a discrete cascade with a log-normal generator with
the same parameters used by Gupta and Waymire (1993).
The cascades for generating both multiscaling and
multiaffine fields are canonical, (i.e., the expectation of the
weights, <W>, is equal to one but the average at each step
may not be exactly equal to one {Mandelbrot, 1974)). For
bounded cascade simulations, the log-normal generator can
still be employed and this is explained below. While in this
paper the simulation is restricted primarily to the two
models described below, to ensure that results are not
specific to the choice of generator, most of the analysis was
repeated on models with different generators including log-
stable (Schertzer and Lovejoy, 1987; Gupta and Waymire,
1993), log-gamma (Saito, 1992), and microcanonical
models. Relevant results using these additional generators
are mentioned where appropriate.

2.3.1 Log-normal Cascades for Creating Multiscaling
Fields (5 < 1)

Log-normal multiplicative cascades used in these studies
are generated with muitiplicative weights, W, at each step
given by
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Fig. 2. A 4096 point log-normal cascade simulation of rainfall (o= (.2).
The simulation has a K{(g) furction and # similar to that computed for a
stratiform rainfall event. For this particular cascade, £ was estimated to
be #=1.1+0.2. The horizontal line represents the mean rain rate, <k> =
2.93 mm/hr. The fact that £ can exceed unity for a canonical cascade is
discussed in the Appendix.

W= ploX—c12) ’ (10)
where X is N(0,1). The variance of the generator
distribution is a function of o, and in general small sigma
leads to less intermittency since the resulting random
weights are all closer to unity. This is a canonical cascade
with <#:> = | ensured by the normalization factor of o2/2.

Fig. 2 shows some simulated rainfall using a log-normal
cascade with o = 0.2. The generator parameter, a, was
chosen to produce time series with a low degree of
intermittency similar to the main divide rain gauge data in
Harris et al. (1996, Figures 2 and 3) where #< 1.

The analytical function, K (g), for the log-normal model
is given by

2
Ka(q)=logh(WQ)=r(q ~q), 0> 0,
where W is the multiplicative weight in (10) and 5 is the
branching number as described in Gupta and Waymire
(1993) (b =2 for ali cascades herein). Equation (11) can be
used to estimate the log-normal cascade parameter, o
Strictly speaking this relationship assumes that the cascade
has been constructed using an infinite number of steps
{Gupta and Waymire, 1993; Kahane and Peyriere, 1976)
and is also restricted to an upper limit on ¢ < g4, Gerir =
K(gery) + 1, where the divergence of moments occurs
{Mandelbrot, 1974; Gupta and Waymire, 1993; Kahane and
Peyriere, 1976). However, for practical purposes, cascades
of 10 to'20 steps are more common, and thus the value of &
used to construct the cascade will not be retrieved exactly.
There is a bias between the simulated o and retrieved o
which decreases with increasing number of steps in the
cascade. It is important to take this bias into account if one
is trying to simulate a field with specific parameters. The
reason for this bias is derived as a property of canonical
cascades in the Appendix.

Since = 1-logy<W2> = 1-K(2) (e.g., Davis et al., 1994),

(1
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Fig. 3. Log-normal bounded cascade simulation of rainfall (¢ = 0.9,
H = 0.3). The simulation has a K(g)} function andg similar to that
computcd for a series of convective showers. For this particular cascade,
/3 was estimated to be f= 1.3 + 0.1. The horizontal linc represents the
mean rain rate, <&> = 2.99 mmv/hr.
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This result can be derived for the log-normal generator
and other cascade generators using results in Gupta and
Waymire (1993). The bias referred to in the Appendix is
noticeably greater for 4 than for K(2) (in the opposite
direction} and so on the average £+ K(2) is greater than
unity, although is sometimes less than unity.

For this particular model a simple relation exists for g,
using the theoretical relation derived for log-stable models
{e.g., Lovejoy and Schertzer, 1995, equation (l4a)) with
a =2 (i.e., log-normal limit) and is referred to here as g, to
remain consistent with previous literature and to distingnish
from empirically found g,,,,,. For the log-normal model,

y2logh

gy == (13)

[¢3

A=1- (12)

2.3.2 Bounded Cascades for Creating Multiaffine Fields
(B=1)

In terms of reproducing the correct statistics and realistic
looking rain gauge time series, good results are obtained
using an alpha model (Schertzer and Lovejoy, 1987; Gupta
and Waymire, 1993) modified to a bounded cascade as in
Menabde et al. (1997). The model used in this study is
slightly different in that the weights, W, vary as

W= 1 Wo-12-61DH, k=12, (14)

where Wy can be any of the usual random weights used for
self-similar multiplicative cascades and is normalized so
that <#y> = 1. H determines the slope of the power
spectrum of the final multiaffine field. The higher the
value of H, the greater the slope and hence the smoother the
ficld will be. Again for simplicity and familiarity, Wy is
chosen to be log-normally distributed as in (10) above.
Fig. 3 shows a typical time series generated using this
method based on model parameters derived from a
sequence of convective showers.
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Fig. 4. Moment scaling for bounded cascades. The plots show the
moment scaling for an ensemble of 100 realizations (circles and triangles)
of 8192 point bounded cascades of the type used in the text with o=} .4
and £7=0.3. Also shown is the result for a single realization (squares) by
generating an 18 step cascade (262144 points) and averaging it down to
8192 paints as described in the text.

The cascade is canonical and as long as <Wy-1> = 0 then
<Wp> = 1. The cascade is bounded in the sense that as
k — o, Wi, — 1 and the variance of W}, decreases with scale
in the following way for Wy log-normally distributed:

<(Wy — D)2 >=(<W§ »>-1)2 2k DA

15
=(ecrz _p22k-DH (1s)

and so the variance goes to zero as k — .

As mentioned above the moment scaling of the absolute
gradients of a bounded cascade generated in this way is
reasonable over a finite range and is shown in Fig. 4. Since
the scaling range in Fig. 4 is partial and midway between
the entire range of scales, scaling right down to the smallest
scales can be achieved by creating, say, an 18 step cascade
(262144 points) and averaging the cascade back down to
say 8192 points. An example of this is shown in Fig. 4 as
well. Kj{g) in (11) provides a good fit and can be used to
estimate an effective o to characterize K(g) for the absolute
gradients of multiaffine fields generated by (14). However,
the estimated o bears no analytical relation to the & value
used in (14) to construct the cascade.

3 Estimation Uncertainty

In the estimation of f# and K{g) there is an inherent degree
of uncertainty resulting firstly from the accuracy of
regressions or fit uncertainty (Fig. 1), and secondly the
sampling variability. The latter arises from the fact that
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Fig. 5. A box plot of £ estimated from 1000 time series for varying
lengths computed using a log-normal cascade with o = 0.2 so that the
theoretical g = 0.94 (dotted line). The whiskers and boxes represent the
5, 25, 50, 75, 95 percentiles due to the sampling variability. The filled
points with error bars represent the mean fit uncertainties.

random realizations of the same process may yield shlightly
different estimates of £ and K(g). There is of course a
dependence on how much data are used, and it is this
relationship between estimate and time series length that is
examined here for the estimates of £ and K(qg).

The method used here is akin to the method to estimate
confidence limits on estimated model parameters outlined
in Press et al. (1992). In essence Monte-Carlo simulations
of synthetic data sets are carried out with each data set
being analyzed to obtain a distribution of a certain
parameter such as Sor o

3.1 Spectral Analysis

Sampling variability inherent in the estimation of £ is
investigated by generating 1000 realizations of a log-
normal cascade with o= 0.2 for various lengths of between
1024 and 131072 data and a theoretical value for
Bg=1- 0.22/10g(2) = (0.94. Fig. 5 shows a box plot of the
estimated values of f where the box and central lines are
the quartiles and median value of £ for the 1000
realizations. The whiskers represent the 5t and 95th
percentiles. The filled points represent the mean estimated
/3 and the error bars represent the mean fit uncertainty for
the estimates of S. It can be seen from Fig. 5 that the fit
uncertainties are of the same order of magnitude as the
sampling uncertainties. It is apparent from Fig. 5 that of
the order of 104 data points are required to estimate # to
within +0.1 at the 95% confidence level. For cascades of
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Fig. 6. Box plot for the sampling variability in K{g) for 1000 tog-normal
8192 point cascades generated with o=0.3. The whiskers and boxes
represent the 3, 25, 50, 75, 95 percentifes due to the sampling variability
alone.

finite length, the estimated values of £ are found to be
biased from the theoretical £ given by (12) as explained in
the Appendix.

Since o increases the variance of the generator, the
variability of the time series increases with o, An increase
in this variability results in an increase in the sampling and
fit, Increasing A for fixed o had no effect on the absolute
sampling uncertainty. Cascades with “fat-tailed”
generators such as the log-stable (Schertzer and Lovejoy,
1987) cascade give slightly higher uncertainties particularly
for low values of the Levy index, &. Microcanonical
cascades yield smaller uncertainties than shown in Fig. 5
owing to their calmer nature.

3.2 Moment Scaling Analysis

The sampling variability in K(g) is also estimated using
1600 realizations of a cascade with 8192 points. For each
of the realizations, K(g) is computed for a scaling range
from 2 to 4096 points as the largest and smallest scales
fluctuate and often deviate from the scaling behavior. The
vatiability in K{(¢) from sampling variability alone is
represented by a box plot in Fig. 6. There is also a small
degree of fit uncertainty in K(g) for each point resulting
from the uncertainty in the slope for each linear regression
of the log-log scaling plots but this is insignificant by
comparison with the sampling variability in Fig. 6.

From Fig. 6 it is evident that sampling variability in K(g)
increases rapidly for high order moments. In other words,
the slope of K{g) for high order moments, where K{g)
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Table 1. Ranked g, estimates, for log-nomal cascades with o = 0.3
and therefore having go=3.9.

Percentile Tmax Trmax
(Method A) (Method B)
5% 1.5 2.2
25% 1.7 2.5
50% 24 27
75% 3.5 29
90% 5.8 3.1

becomes increasingly linear, fluctuates strongly from
sample to sample. This represents the sample variability in
the relative magnitude of the few or single dominating
value(s) present in each sample. Furthermore it is this
variability which results in different values of g,,,,, for each
sample or realization.

The sample variability in g, is illustrated by the two
examples in Fig. 7. Fig. 7a shows a K(g) curve computed
for an 8192 point log-normal cascade generated with
o=0.3. Since the data are simulated and contains ro noise
and Zeroes, gy, is set to Zero. gy, is estimated using the
method (Method A in Table 1) described above in Section
2.2 in which the upper limit for ¢ over which K,(g) is fitted
is increased until such time that K,(g) exceeds the error
bars for K(¢). This method, however, is not ideal and for
the simulation studies K(q) curves are computed for data
sets where the quality of moment scaling is so good
yielding very small error bars yet the curve becomes linear
very quickly (i.e., low ¢,,,,). In this case because the error
bars are so small, the very first K (g) fit about g = |
exceeds K(g) by the uncertainty at ¢ ~ 1. A degree of
arbitrariness thus ensues in the process and it is useful if
one can choose g,,,, to be the point where K {g) exceeds
K(g) by two {or even three) uncertainties (i.e., 95% and
99% confidence limits). Fig. 7b shows a fit where gq,
delimits the point where K, (g) exceeds K(g) by twice the
error bars shown. The process of arbitrarily relaxing the
condition at which K,(g) is said to diverge from K(g), is not
serious in that it has liitle effect on the estimated
parameter(s) from K (g) (i.e., oy for the log-normal
model). g, is also estimated using the arbitrary criterion
{Method B in Table I} above where g,,,, is the g value for
which the top 10% of the data contributes to 90% of the
moment. Both methods give similar results and are
tabulated in Table ! for the example of 1000 log-normal
cascades with ¢ = 0.3 and may be compared with the
theoretical value computed using (13), g, = 3.9.

Evaluation of the two methods, A and B in Table 1 and
the use of the fixed value, ¢,, considers the quality of the fit
quantified by 32 and its probability of exceedence for each
fit. Method A gave lower 32 values with 32 exceedence
probabilities beyond the 95% limit for 70% of the
realizations. Method B gave 32 exceedence probabilities
beyond the 95% limit only 30% of the time. Using a fixed
Imax = 45 only provided similar fits only 20% of the time
and furthermore increases the bias between o,y and o
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Fig. 7. Two different X{g} curves for identical cascade processes. Both
K(g) curves result from 8192 point cascades generated with o = 0.3.
Error bars represent linear regression uncertainties in the slope of each
tog-log plot of the moment scaling which yields each value of K(g). The
fitted K (g) curves are fit to K{g) between ¢ = 0 and g = gy Where
Tmax 1§ the point at which X,(g) exceeds the uncertainty at K{g) (see
text). For comparison, o= 0.3 yields g4 = 3.9 using relation {13).

Using ¢pmqr = g5 gives roughly the same resuits as using a
more stringent criterion in Method B where g, is the
point where the top 5% of the data contributes to 95% of
the gth moment.

Neither Method A or B are ideal yet provide a rough
estimate to ¢,,,, and more importantly reflect the notion of
a variable gp,y. As final notes on the estimation of g,
there, firstly, did not seem to be a direct relation between
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Fig. 8. Sampling uncertainty in the estimation of the generating

parameter, o,g, for single log-normal cascades of varying length
simulated with o= 0.3 as indicated by the horizontat reference line.

the retrieved value, g,y and the value of g,,,, as one might
expect. Secondly, there is no relation between g,,,, and the
length of the cascade as already suggested by Schertzer and
Lovejoy (1992).

Fig. 8 shows the sampling uncertainty of the estimates of
o as a function of the number of points in each cascade. It
is evident from this Fig, that estimates of & have significant
uncertainties and it is therefore difficult to estimate o to
better than 10% accuracy at the 95% confidence level. ois
estimated from K(g) by a nonlinear fit of K (g) in (11} to
K(g) from g = 0 t0 g, where g, is estimated using
Method A above. By comparison, the fit uncertainty in o
for each realization is often less than 0.1% and so is
negligible in comparison to the sampling uncertainty.
Again, the bias is an artifact of canonical cascades as
explained in the Appendix.

4 Mixing Differing Random Processes

While the previous section suggests obtaining results from
very long time series in order to reduce uncertainty, some
simple tests presented in this section illustrate the
importance of avoiding taking time series so long that they
include different processes. Mixing processes or, in other
words, including physically different meteorological
processes {e.g., stratiform frontal rain and convective rain)
in a single time series may result in one of the processes
dominating all of the statistics. The necessity to be careful
when mixing different processes has been suggested in the
literature (Lovejoy and Schertzer, 1991, p. 138).
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Fig. & Ki(g) curves for two diftering multiscaling processes and the
mixture of the two. gpqy values were estimated to be 3.0, 1.5, and 2,0
for the less intermitient, more intermittent and mixture K(g) curves,
respectively.

4.1 Simulation Studies

By simulating a number of cascades with different K(q)
curves and mixing different proportions of them together in
an ensemble, one can examine what the resulting 5 values
and K{g) curves are for different proportions of processes.
Consider a mixture consisting of two log-normal cascades
with half of the data constructed with high o (more
intermittent) and the other half with low o (less
intermittent). While theoretically such a mixture should
destroy scaling all together, mixtures of cascade
simulations often have excellent scaling for all moments
albeit with a reduction in the upper limit of the scaling
range. Even the reduction in scaling range was inconsistent
and highly variable. Fig. 9 illustrates the resulting K(g) for
such a mixture and comparison is made to the individual
K(q) curves for each half. In this example the less
intermittentt half has a mean that is twice that of the more
intermittent half yet, clearly, the scaling of the mixture is
dominated by the more intermittent statistics. This is
explained by comparing the higher order moments (g = 2)
of the two halves which shows that the more intermittent
data outweighs the less intermittent data by a factor of three
for ¢ = 2 and a factor of 35 for ¢ = 3. In this particular
example the scaling range for the mixture is reduced to ~3
orders of magnitude from ~4% orders of magnitude for the
individual halves. g, values quoted in Fig. 9 are
estimated using Method B). In general the domination of
one signal over an other is determined by a combination of
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Fig. 10. K(g) curves for pre-frontal and post-frontal rain as well as the
mixture of the iwo. Estimated g,y are 2.3, 2.1, and 1.9 for the pre-
frontal, post-frontal and mixture Kig) curves, respectively.

the intermittency and their relative strengths. If the less
intermittent signal in the example above is sufficiently
stronger relative to the more intermittent half, it is possible
to have the less intermittent signal dominating all mements.

4.2 Mixing Data from Pre-frontal and Post-frontal Rain

The data set discussed here consists of ~68 hours of rain
gauge data during which a front has passed roughly half
way through the time series. The pre-frontal conditions
consisted of a blocked warm air flow with near neutral
stability for ~34 hours leading up to the front. The post-
frontal conditions consisted of an unstable and cooler air
mass, These assertions are supported by MSL pressure
analyses, numerous soundings (temperature, pressure, and
humidity), hourly meteorological station data, and ground
based cloud observations. Details are contained in Purdy
{1997). The pre-frontal rainfall was ~6.3 mm/hr on the
average compared with ~1.9 following the front.

All case studies analyzed here use data from high
resolution electronic rain gauges which function by
generating constant sized drops at the bottom of a 15 cm
diameter funnel collecting the rain. The drops are sensed
by an electronic probe and tallied digitally. One generated
drop is approximately equivalent to 1/160"™ of a millimeter
of rainfall, and over an integration period of 15 seconds this
represents a resolution of ~1.5 mm/hr. Longer integration
periods improve this resolution proportionately. See Stow
et al. {1997), Austin (1994), Hosking et al. (1985}, and
Harris et al. (1996) for more information about this rain
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gauge. All the data used was collected in early November
1994 on the South Island of New Zealand.

£ and K(g) are computed before and after the front as
well as for the mixed time series consisting of both pre-
frontal and post-frontal rain. The time series is multiaffine
both before and after the front and # is marginally smaller
for the pre-frontal data. Taking gradients and finding K(q)
produces the curves shown in Fig. 10. The K(g) curve for
the pre-frontal rain is shallower than K(g) for the post-
frontal data. As in Section 4.1, it is not surprising that the
mixed time series featured a K(g) dominated by the portion
of the time series with the steeper K(g), which in this case
was the post-frontal rain.

The data used for Fig. 10 scales well between time scales
of 2 minutes to 4% hours (24 orders of magnitude). Higher
order moments (4 > 1) scale well down to 15 seconds
(3 orders of magnitude) suggesting the effect of rain gauge
quantization in lower order ¢ (see below, Section 5.1},

The K{g) for these time series also show K(0) = 0 as a
consequence of the presence of zeroes in the time series.
Again, while some of the zeroes are an artifact of the gauge
(see below) some may be real. The result is a ¢, > 0
below which K {g) for a cascade (without an atom at zero)
will not apply. The K(gq) are poorly fit by the log-normal
model in (11) and suggest using another model such as the
log-stable model (Schertzer and Lovejoy, 1987).

5 Effects of Noise and Instrumental Artifacts

In this section the effects on analysis results of noise and
instrumental artifacts are examined empiricaily by
modeling these effects on cascades. Since the specific
details of the types of noises and artitacts which may be of
concern to the user of a particular instrument are too
numerous and varied to be included, only three general
effects are considered here. The first effect has been briefly
mentioned in the previous section and is referred to as
quantization noise. Quantization is an artifact of one of the
most common types of rain gauges today, the tipping
bucket rain gauge, and has an impact particularly at low
rain rates. For this reason, this effect is also referred to as
the tipping bucket effect. The electronic gauges used in
this study are in some sense tipping bucket gauges as well,
except that the ‘bucket’ is a single drop of water generated
by the nozzle assembly. The second effect is referred to as
additive noise and for the purposes of illustration restricted
to Gaussian white noise. In practice a noise added in this
way could be, for instance, representative of electrical or
background noise in such instruments as impact
disdrometers, and other electrical devices such as the sonic
gauge (Duncan, 1993; Fabry, 1996). More important to
this study, as will be shown below, is the fact that the
aforementioned quantization effects behave significantly
like high level additive noises following a gradient
transformation.  Gradient transformations are the third
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Fig. 11. The tipping bucket effect at low signal levels. A rain rate, R,
time series at 15 second resolution simulated by a log-normal cascade in
(a} on the left is recorded as (b) by an instrument with a *bucket’ size
equivalent to 1/160" mm equaling a quantization of 1.5 mm/hr in 13
seconds.

effect studied here although they not really an instrumental
artifact or noise, but a consequence of the analysis
procedure. K(g) is shown to be robust to the addition of
small amounts of noise or quantization but the effects of
additive noise or quantization are greatly enhanced if one
takes gradients of the field prior to calculating X(q) as is
routinely done for multiaffine fields.

5.1 Quantization: the Tipping Bucket Effect

A tipping bucket rain gauge records the time taken to
accumulate a unit of rainfall, usually around 0.1-0.2 mm. It
is difficult to deal with a series of data which has a variable
time step and it is therefore convenient to convert the data
to one with a fixed time step. The electronic drop counting
gauges used in this study work by accumulating the rainfall
into drops of known volume and then logging the number
of these drops passing throngh the gauge per unit of time.
This has the advantage of directly producing a time series
with a fixed time step. The data from such a gauge will be
quantized with a quantization level equal to the rain rate
that corresponds to one drop generated per unit time. For
the gauge data used here the quantization level is ~1.5
mm/hr at 15 second resolution. The mean rain rate given
that is raining is often in the 1-5 mm/hr range and therefore
the quantization effects are significant for high time
resolution measurements of light rain.

The tipping bucket effect is quite different to the
quantization associated with the digitizing of a signal. For
low rain rates, a signal below the resolution of the digitizer
would be set to zero, whereas the gauge accumulates these
low signal levels and then records a pulse when enough
rain has accumulated to fill the bucket {or form a drop in
the case of the electronic gange used here and described
above). This effect is illustrated in Fig. 11.

The effect of the tipping bucket effect on spectra of time
series is shown in Fig. 12. In short the effect is to introduce
a flattening of the tail or a sharp ‘kink’ in the high
frequency end of the spectrum. It is similar to the effect of
additive noise below except for the sharper break in scaling
with little effect on the exponent of the spectra for
frequencies lower than that kink and the estimate of £ is
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Fig. 12, Effect of tipping bucket quantization on Lime series spectra
generated by 8192 point log-normal cascades with o = 0.2. The
regressions for the spectra with noise do not include data in the last
octave and last two octaves for the 50% and 100% cases, respectively.

hardly aftected. The level of quantization is defined by the
fraction of the mean signal level and referred to in Fig. 12
as a percentage. To put the apparently high values of
quantization in perspective, consider a rain gauge time
series where the rain rate resolution of the gauge is
1.5mm/hr (based on the electronic gauge described above).
A mean rain rate of 3 mm/hr would mean having a
quantization level of 50%.

The tipping bucket effect on moment scaling is shown in
Fig. 13. As expected there is a scale break at small scales
due to the quantization. This break is seen more
pronounced for the lower order g. This is a consequence of
the fact that low signals are enhanced by low order
moments and it is the low signals that are also more
affected by quantization as illustrated in Fig. 11. For very
low ¢ (g =~ 0) scaling range can be significantly reduced, if
not destroyed altogether, and introduces a g,,;, > 0.

In measured rainfall records where there may be long
periods of zero rainfall (which, of course, requires an
independent assessment), it should be noted that the
quantization level should be estimated relative to the
conditional mean rainfall (i.e., rainfall given that it is
raining).

5.2 Additive Noise

As a simple but illustrative example of the effect of additive
neise on multiscaling analysis, white Gaussian noise is
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Fig. 13. The effect of quantization on scaling moments.

added to cascades. The noise level is described in the usual
way by the signal to noise ratio (SNR) defined as the ratio
of the mean squared rainfall to the mean squared noise (i.c.,
<RI>/<N%s ), or more conveniently by its inverse
expressed as the ni’se percentage. The noise distribution
has a mean near zero and is truncated so as not to end up
with negative rainfall. Fig. 14 shows the effect on power
spectra of adding noise with powers up to 30% of the signal
power. From these spectra one notices a gradual flattening
of the high frequency end of the spectra and a decrease in
the value of £ with increasing noise. The values shown for
f are computed only from the octave binned spectra.
Compared to the sampling and fit uncertainties for a field
of this length, the observed decrease in # is seen to be
significant and greater than the estimated uncertainty in 8
for the high noise (30%) case. However, § seems fairly
robust to the addition of small amounts of noise. With the
addition of noise the tails for ffium, > 0.1, (figmp is the
sampling frequency of the signal) introduce an artificial
break in the scaling, and so are not included in the
regressions to estimate 5. The effect of additive noise on
multiaffine fields is similar,

Fig. 15a shows the scaling of the 2 moment for various
degrees of contamination by Gaussian white noise. The
increase in t,,, and therefore the reduction in scaling range
is evident. Clearly, if the noise level is high enough
(exactly how high depends on the statistics of the field
being studied) the scaling range will be sufficiently small
that the data ceases to be multiscaling. All moments
displayed the same small scale behavior and slight decrease
in slope. The smaller scales, indicated by the white points,
are exciuded from regressions as for the estimate of #. One
also notices that while £ decreases so does K(2) which
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Fig. 14. Effect of additive noise on time series spectra. Each spectra is
computed from the same 8192 point log-nommal cascade (with o= 0.2)
but with difterent noise levels indicated on the legend. For each octave
binned spectrum there is a corresponding line spectrum computed using
the subdivision method of noise reduction.

means that noise exacerbates the breakdown in the relation,
F=1- K{(2), for multiscaling fields.

The effect of noise on the estimate of K(g) is seen in Fig,
15b. In general, K(g) becomes less steep with the addition
of noise, Equally striking is that the low order moments are
the most strongly affected by noise. The high noise (30%)
case is sufficient to greatly alter K(g). The lower noise
(10%) case seems to be very similar to its noise free
counterpart pointing again to the robustness of K(g) to the
addition of small amounts of noise. It is worthy to note,
however, that the fitted model, K, g) (dotted line)
underestimates K(g) of the 10% noise case for higher order
g. This is explained by the fact that the high order
momnients (reflecting the statistics of higher fluctuations) are
insensitive to the generally low level noise. However, the
fitting is still influenced, to a significant degree, by the low
order moments. The estimated values, o, parameterizing
the log-normal K. (g) are o,, = 0.28, 0.24, 0.17 for the
noise free, 10% noise, and 30% noise data, respectively.
The ¢ ranges over which the fits are taken also change
significantly. The noise free data has g,,;, = 0, and
"Gmax = 2.8, while the data with 10% noise has g,,;, = 0.7,
and g, = 1.8 and for the high noise data, ¢,y drops to
1.5.

5.3 The Effect of gradients

The process of taking gradients as defined in (4) is a
consequence of the analysis and not the measuring
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Fig. 15. Effect of additive noise on moment scaling. (a) The effect of
noise on the scaling of the g = 2 (negative slopes) and ¢ = 0.5 (positive
slopcs) moments for a cascade with no noise (circles), 10% (triangles)
and 30% (squares) additive white Gaussian noise, respectively. (b} The
effect of noise on the K(g) function for various levels of noise
contamination. All curves are computed from the same 8192 point log-
normal cascade (o= 0.3). The inset shows that even small amounts of
noise affect the lower order moments (g < 1).

instrumentation. When studying the effect of the noises
above on multiaffine fields it was found that the act of
taking gradients strongly enhances the adverse effects of
these noises. Examples of the enhancement are listed in
Table 2 in which figures are computed by separating out
the noise (additive or quantization) and monitoring their
levels separately before and after gradients of the field.
Because rainfall is non-negative, the amplitude of the noise
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Table 2. Examples illustrating the enhancement of noise due to taking
gradients of a multiaffine field constructed using a bounded cascade with
H=03and o=14.

Noise Noise Percentage Noise Percentage
(Field) (Gradient Field)
10% additive 10% 101%
30% additive 30% 304% *
50% Quantization 0.3% 7%
100% Quantization 0.9% 22%*

* Moment scaling destroved

free signal decreases when taking absolute gradients.
However, the noise is not non-negative, and therefore
taking absolute gradients is the same as adding uncorrelated
noise which increases the noise variance.

The addition of white noise or quantization of a
(multiaffine) field followed by taking gradients results in a
new field which can be represented as the noiseless
gradient fleld plus an effective additive noise referred to
here as gradient noise. This effective gradient noise has a
flat spectrum below a certain frequency and has a scaling
spectrum (3> 0) above that frequency. For the examples in
Table 2, the addition of white noise followed by taking
gradients results in a noise which has g = 09 for
Sfsamp > 0.1, where fiap,, is the signal sampling frequency.
For the case of quantization, the gradient noise has £~ 2.9
for fifsamp > 0.3.

As indicated in Table 2, the case of 30% noise results in
~300% gradient noise and destroys scaling altogether. In
the case of 100% quantization, the scaling range following
gradients was reduced to less than two orders of magnitude
which can hardly be considered as scaling. In the other
cases, the scaling range was reduced from well over two
and a half orders of magnitude down to just over two orders
of magnitude.

The resulting K(q) curves are shown in Fig. 16.
Moments less than ~0.3 were found not to scale for the data
with noise or quantization and for the case of quantization,
Gmin = 0.7. As in Section 3.2, the scaling of the lower order
moments changes most with the addition of noise or
quantization and influence the fitting of a model K{g).
Once again, models underestimate K(g) for large ¢,
although only marginally for the case with 50%
quantization. g,,,, for the noise free data was low in this
example with gq,,,, = 1.5. the estimated parameters, o, for
the log-normal model were 0.35, 0.16, and 0.30 for the data
with no noise, 10% additive noise and 50% quantization
respectively. Again, K{g) seems fairly robust to
quantization but only for ¢ = 1 and above if pradients are
taken.

5.4 Effect of Spurious Spikes

In 1994 on November 4", a time series was collected with a
possible ‘glitch’ likely to be an instrumental artifact.
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Fig. 16. Effect of quantization on K{g) after gradients. The time series
used to compute the curves were simulated by a dressed 8192 point log-
normal bounded cascade with o= 1.4 and H = 0.3. The inset enlarges
K(g) for ¢ £ 1. The contaminated data do not have scaling gradients for
moments less than ¢ = 0.3 and is the reason for the truncated K(g) curves.

Another nearby rain gauge a few kilometers away recorded
very light rainfall during the same period, but the short and
intense spike shown in Fig. 17 is too sudden and lacks any
“lead-up” and “wind-down™ to the peak rain rate suggesting
that it may be a build up of water in the gauge funnel
folowed by a quick surge perhaps lasting some
15-30 seconds. The series in Fig. 17 was combined
together with the series of the nearby gauge to form an
ensemble of two series of 8192 points so as to examine the
effect of this glitch on the estimation of £ and K(g).

The effect of the glitch on the power spectrum is seen in
Fig. 18. The top two plots represent spectra for the data
with the glitch and the bottom two curves are for the data
without the glitch. Since the glitch actually comprises of
33% of the total combined power of the signals, it is not
surprising that it has a noticeable effect. Furthermore, the
glitch also dominates the quantization effect that is so
obvious in the bottom two spectra for the data without the
glitch. The flat noise tail in the two bottom spectra are due
t0 quantization noise which is estimated to be at a level
near 300% of the mean rainfall from 16 to 32 hours in
Fig. 17.

Although g ~ 1.2 for the series without the glitch, the
moments are found to scale without the need for gradients
and is thus a multiscaling field. This is fortunate since the
high quantization would have a detrimental effect on K{(g)
estimation following a pgradient transformation. The
moment scaling range over moments from g = 0.2 and
greater was approximately three and two and a half orders
of magnitude for the cases with and without the glitch,
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Fig. 17. Sample Rain rate time series at 15 second resolution recorded
November 4™ 1994 on the South Island of New Zealand. The inset is an
expansion of 5 minutes during the 10™ hour of the time series during
which the glitch occurred. There was no rain in the first 10 hours of (his
8192 point series.

respectively.  The magnitude of the discrepancy in the
apparent breakdown of relation (12) between £ and K(2) is
large here but discrepancies even larger than this can be
reproduced using simple (noise free) canonical cascades.

The K(g) for the data with and without the glitch are
shown in Fig. 19. The difference is large primarily for ¢ >
1 which may cause differences in the estimation of the
curvature parameters of a K{g} model such as & in the log-
stable model (Schertzer and Lovejoy, 1987).

5.5 A High Resolution Rain Gauge - Radar Comparison

Comparing data from two instruments as different as a rain
gauge and a radar is a non-trivial task. Radars and rain
gauges have very different sampling statistics and the
conversion of radar reflectivity (Z) to rain rate (R)
incorporates nonlinear transformations. There is a large
literature on Z-R relationships (e.g., Atlas, 1990 and
references therein; Smith and Krajewski, 1993) which
discuss errors due to sampling volume discrepancies, short
term changes in drop size distributions, and up drafts. It
should be noted, however, that the data analyzed here are
unusual in that the wind speeds at the ground were
exceptionally light thus minimizing some of these
problems.

On the 18t to the 19th of October, 1996, a low pressure
system to the south west of New Zealand was blocked by a
high pressure system over New Zealand’s North Island
resulting in a light westerly flow over the South Island
producing rain on the west coast of the South Island in near
constant atmospheric conditions. Simultaneous rain gange
and vertically pointing radar (VPR) time series at
15 seconds resolution were collected over ~34 hours
(8192 points) during the period and are analyzed and
compared here. The electronic gauge (also used above) had
an enlarged funnel resulting in an exceptionally low
quantization level of 0.34 mm/hr at 15 second resolution
for this. The VPR time series is sampled at 500 meters
where the beam width is 13 m and the pulse height is
60 meters resulting in an illuminated volume of
apptoximately 8000 m3. Each 15 second measurement is
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Fig. 18. Thc effect of possible glitches on the power spectrum of rainfall
time series of 8192 points in length. The top curves are the average and
octave binned power spectra of the time series with the ‘glitch’ and have
the combined 4 shown. The bottom two plots are for the same combined
time series with the glitch removed. The bottom two regressions are for
Hlsamp < 0.01 Hz. The spectra are an ensemble of two nearby gauges
only one of which has the glitch shown in Fig. 17.

the result of just under 4000 pulses. The two time series
are shown in Fig. 20 where a 2% minute delay (obtained
by maximizing the cross-correlation between the series) has
been added to the rain gauge time to account for the delay
in the rain dropping 500 meters to the gauge and the delay
of the flow of water through the gauge itself. The rain
gauge mean is 5.44 mm/hr giving a very low quantization
of 6%. With hindsight of the analysis resulis below, the
VPR rain rate was computed using a Z-R relation of the
form Z = aR® with b chosen to be » = 1,7 which provides
conservative estimates of peak rainfall rates (e.g., Seed et
al., 1996). Since a is effectively a normalization constant,
it has no bearing on the results of multiscaling analysis, yet
a value of @ = 94 results in a mean equal to the rain gauge
mean. Least squares regressions of the VPR Z
measurements versus the rain gauge R measurements
resulted in & = 1.4 which would enhance the differences
seen in Fig. 20. Visual comparison of the two series
suggests a significant correlation between the two
(correlation coefficient r = 0.65). The most noticeable
difference is the larger maximum to mean ratio for the VPR
series however sometimes the reverse is true particularly in
the last six hours of the time series.

The spectra for the two series are similar with = 1.48
and §= 1.38 for the gauge data and VPR derived rain rates,
respectively. The moment scaling range is slightly better
for the VPR derived rain rates with scaling from 30 seconds
to 8.5 hours (over 3.5 orders of magnitude) while the
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Fig. 19. Effect of the glitch in Fig. 17 on K{g) for rainfall series of 8192
points in length. The scaling ceases for moments below g ~ (.2 as a
consequence of the high degree of quantization at small scales.

scaling range for the rain gauge is from 2 minutes to 8.5
hours. The resulting K(g) curves are shown in Fig. 21. The
difference in intermittency suspected from visual
comparison of Fig. 20 are confirmed here. g,,,, for the
curves are estimated, using Method B above, to be
approximately 2.5 and 3.5 for the VPR and rain gauge data,
respectively. Because 5 in the Z-R relation used to derive
the rain rates for the VPR was chosen to be high, the
observed difference between the two K{(g) in Fig. 21
represent a minimum discrepancy. A lower value of &
would enhance the VPR intermittency even further.

The comparatively greater intermittency for VPR derived
rain rates is a somewhat surprising result when one
considers the difference in sampling area of the two
instruments. The gauge has a diameter of 0.2 m while the
VPR has a beam diameter of 13 m and fo make a very
rough estimate of the vertical scale one may consider that
over 15 seconds rain may move ~75 meters (based on
~ 5 m/s average drop speed) which is comparable with the
60 meter pulse height. From these differences sampling
alone suggests the radar sampling volume is much larger
and so should be smoothed out more than the gauge,
however the reverse seems true.

There are a number of factors to consider in
hypothesizing why this may be. Firstly, the fact that while
the VPR data had peak values which generally exceed the
gauge peak values (relative to their respective means),
sometimes the reverse is true and this suggests variability in
the true Z-R relation (Smith and Krajewski, 1993), which of
course is unknown. Z-R variability may be the result of
changes in drop size distribution with time and/or changes
in updraft or down-draft velocity with time. Given the light
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Fig. 20. Simultaneous rain gauge and VPR time series. Each series is
8192 points long and the VPR series results trom radar reflectivity
averaged over 15 seconds in time and between 500 and 560 meters
directly above the gauge. Reflectivity is converted to rain rate, R, using Z
=94R17. The horizontal dashed lines indicate the means of the signals
which are the same for the two series and equal to <R>= 544 mm/hr,

wind speeds (typically less than 3 km/hr), the latter is
unlikely. The light winds also suggest that underestimation
of the gauge due to horizontal advection (e.g., Rodda,
1971) is not likely to be occurring.

Considering that the reflectivity is very well measured
(~4000 pulses/measurement) radar accuracy is not a likely
cause for the discrepancy. The limited evidence at this
point suggests that changes in time of the drop size
distributions may be the only plausible hypothesis. In
particular the most significant deviation between the radar
and gauge occurs during the 8® hour where differences in
the drop size spectrum (in this case, tending to an increase
in larger drops) could explain such a deviation. Physically,
the discrepancy is difficult to explain with the limited
information given. This issue requires further examination
with the possible help of additional instrumentation such as
drop size spectrometers. Such a project is currently
underway.

6. Summary and Conclusions

Multiscaling techniques provide a method to quantitatively
characterize the intermittency and smoothness in rainfall
and other highly variable geophysical fields. Rainfail
brought on by different meteorological processes show
differences in the multiscaling parameters as shown in
Section 4.2 and Harris et al. (1996). The aim of future
work with these methods will be to investigate links
between the multiscaling properties of rainfall and the
meteorology producing the rain.

Before differences in estimated scaling parameters can be
used to reflect differences in meteorological processes, it is
important to examine the accuracy and robustness of the
analysis results. In this paper, multiscaling analysis is
restricted to the computation of the spectral scaling
exponent, 5, and the moment scaling exponent, X(g). The
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Fig. 21. K(g) functions from simultaneous rain gauge and VPR derived
rain rate time series. The inset enlarges the K(g) curves for 0 < g= 1
The presence of zeroes in the rain gauge time series partly due to the
small amount of quantization results in K(g) = 0. gy Tor the curves
were estimated (o be g,y = 2.5 and 3.5 for the VPR and gauge curves,
respectively,

three principal issues concerning multiscaling analysis
which are addressed in this study are 1) field sampling
variability, 2) results of mixing physically different fields,
and 3) the effects of instrumental artifacts. These issues are

primarily studied using simulations and in some cases

further illustrated with real data.

Canonical cascades are used to study the sample
variability in estimates of £ and K(g). The magnitude of
the variability may be contributed to in part by the fact that
canonical cascades are known to have high sample
variability (Mandelbrot, 1974). In this case the method of
estimating sample variability by Monte Carlo simulations
of canonical cascades puts an upper limit on the sample
uncertainty of multiscaling fields. The extreme sample
variability in K{g) for high g is argued to be a consequence
of the random occurrence (or absence) of extreme values.
This is reflected by the random nature of a maximum
moment, g,q., zbove which the K(g) curve becomes
increasingly linear. Because this transition to linearity is
gradual, estimation of ¢,,,, is difficult. The two methods
used here are not ideal yet offer conservative estimates of
{Jmax which seem to minimize bias and 42 when fitting
analytical forms, K (g). The methods are based upon: A)
fiting a form, K. {(¢), to the estimated K{g) over a small
range about g =~ 1 and progressively increasing the ¢ range
until K (g) departs from XK(g)} by a certain amount.
B) Establishing a simple criterion where g,,,, is considered
to be the moment where the highest X% of the data values
contribute to Y% of the moment. Method A leaves doubts
as to its robustness (occasionally returning unusually low
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9may) Dut has the advantage that it can be used to estimate
dmin below which K(g) is dominated by noise and/or zeroes
or simply fails to suit a particular model. In this case, g,
and gy, empirically define the range of ¢ over which a
model, K (g), applies to the data. Method B has the
advantage that it is not model dependent and relates g,,,,
more directly to the numerical reason for which K(g)
becomes more linear (i.e., K(g) is determined by very few
of the data points). Method B’s drawback is that the
criterion is somewhat arbitrary yet so are so many statistical
criteria. Good results were obtained using X% = 10% and
Y% = 9(%. Estimation of g,,,, using either method were
generally lower than the theoretical estimate, g,, (Schertzer
and Lovejoy, 1992). This essentially amounts to the
estimates of ¢y, used here being more conservative than
gs- In reality there is no specific g at which K{(gq) becomes
linear, but rather a range of g in which the change occurs so
it is difficult to say where in this range one should
designate ¢,,,y. The authors regard this as a problem which
requires more thought yet the simple (yet non-ideal)
empirical methods proposed above clearly emphasize that
the estimation of g,,,, and g, should be realization
dependent rather than a fixed value for all similar
processes.

Recent efforts have been made particularly in the hydro-
meteorological community to link physical processes with
the statistical structures they produce. If progress is
continued to be made towards this goal, efforts must be
made to use whatever knowledge available of the physical
state of the process creating a data set. As demonstrated
above, the combination of different physical processes into
a single data set for analysis can have detrimental effects.
In particular highly intermittent data with strong
fluctuations may dominate less intermittent data having a
weaker signal strength. If it is known that these differing
statistics are the result of distinct physical processes, it is
imperative that they be separated prior to analysis. Only
through systematic studies of this nature can one make
progress in perhaps solving the reverse problem in which
one infers the likely physical mechanisms from the
multiscaling / multiaffine statistics.

The sensitivity of multiscaling / multiaffine analysis to
fluctuations of all magnitudes is a distinct advantage that
these methods have over Ist order statistics or any other
fixed order statistics. It is however a two-edged sword as
instrumental artifacts, if ignored, may lead to strongly
biased results. Quantization leads to noticeable changes in
K(g) for very small g and introduces an effective moment
Gmin below which moments are dominated by the
quantization and possible introduction of zeroes. Apart
from this, K(q) and £ are robust to this artifact.

Additive noise affects the K(g) curve over a broader
range of g than quantization, however again K(g) and 3 are
robust to small amounts of noise. The amount of noise that
can be tolerated is dependent on the underlying process.
Nevertheless, even small amounts of noise and quantization
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behave as strong additive noises following a gradient
transformation as one would perform to analyze a
muitiaffine field and estimate its K(g) function.

The dependence of analysis results on instrumental
artifacts is illustrated by the analysis of real data containing
a spurious glitch. Given the sensitivity of multiscaling
analysis to such fluctuations, this example demonstrates the
importance of making sure that data is void of such artifacts
and ensuring that extreme values are real.

A final example of instrumental dependence is illustrated
by comparing radar and rain gauge time series collected at
high time resolutions. The radar data seems, in general, to
be more intermittent than the gauge data despite the fact
that the two instruments are essentially measuring the same
rain but in different ways. This illustrates the importance
of considering the impact of differing measurement
techniques before comparisons between instruments and
general conclusions about the nature of rainfall can be
made.

Appendix. Canonical cascades and the moment scaling
function, K(g)

Some theoretical properties of canonical cascades are
reviewed here for the purposes of explaining the biases
observed between the parameters used to simulate cascades
above and the ones retrieved following the multiscaling
analysis of the constructed cascades. This appendix
contains no new theoretical developments and is based
upon results suggested in Mandelbrot (1974), and Kahane
and Peyriere (1976) using notation similar to that used by
the latter authors.

Consider a homogeneous distribution of a field in one-
dimension (ie., a time series; extensions to higher
dimensions carry over in a simple way) having the value Ry
over the time interval . On the first step the interval is
divided into two halves and each of them is assigned a
value Rj=RpH#(1) and R;=RpW(2), respectively. Note that
for simplicity each interval here is split into two halves
{i.e., branching number of # = 2); however, one could also
divide each interval into thirds or any other fraction. The
randomly chosen weights, W(i), are independently and
identically distributed (iid) random variables produced by a
generator satisfying the condition that <W==1.

An N-step cascade of a time series may thus be
represented by

Raiy,. nin) = RoW(D W) W3, Lix) (A1)

where the set of binary indices, i, ..., iy indicates 2¥
possible realizations of the random field and Ry is a
constant. The field at a coarser resolution denoted by n < N
found by degrading the N-step cascade so that,

Ralit...ip) =

RoW(iW i, i), Wi, .. i) nanin,. i) (A2)
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where Zy, is called the high frequency component

{Mandlebrot, 1974} or dressing factor (Schertzer and

Lovejoy, 1987) equal to

Zy_n(iyyensig)=

2N S Wi WY ooy )W g i) - (A3)
by Lol iy

Zn.n is a random independent variable dependent only on
N-n.

Raising both sides of (A2) to the g'h power and taking the
average of both sides yields

<RI>=(<Wi>)"<Z% ,>. (Ad)

For (N - n) > o <Z,_, > may diverge for some g > gey;.
This property is known as the divergence of moments
{Mandelbrot, 1974). Taking the logarithm of both sides of
(Ad),

logy < RY >=nlog, <W9 >+logy <Z8_, >, (AS)

one gets the approximate scaling relation for & =2. For the
log-normal cascades used above, <Zf,{,_n> ~ | and thus
logy <RI »=~nlogy <W9>and since n = T/t one
approximately obtains (2) above with K(g) = loga <>,

In the construction of log-normal cascades above with the
parameter, o, the retrieved parameter, g, is consistently
less than o because, although <Z]‘{[_n > = |, <Zg,7n>
roughly increases with N - n for g > 1 and decreases with N
- n for g < 1. Via simulations, <ng-n > can be simply
estimated and are found to increase (decrease) relatively
quickly (e.g., from 1 to ~1.1 for ¢ > 1) for low
N - n ((N - n) < 6) and then roughly stabilizes only very
slowly increasing (decreasing). This accounts for the
decrease in bias with increase in cascade length. Similarly,
since the bias decreases |K(g)|, it has the opposite effect on
estimated values of £. Values slightly exceed the expected
value for canonical cascades. It is also found, however,
that 2+ K(2) slightly exceeds unity on the average.
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