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Abstract. We propose an efficient method for estimating One of the data-assimilation methods widely applied in
a time-mean state of an ocean model subject to given obphysical oceanography is four-dimensional variational data-
servations using implicit time-stepping. The new methodassimilation (4D-Var). It is a method in which information
uses (i) an implicit implementation of the 4D-Var method that is present in observations is combined with the evolu-
to fit the model trajectory to the observations, and (ii) a pre-tion determined by a particular ocean, atmosphere or climate
processor which applies a multi-channel singular spectrummodel. Estimates of the ocean state from 1992 through 2000
analysis to enhance the signal-to-noise ratio of the obserwere calculated by assimilating WOCE data and NCEP re-
vational data and to filter out the high frequency variabil- analysis of the surface fluxeStammer et al.2003. Ob-

ity. This approach enables one to estimate the time-measervations are also used in operational oceanography to ini-
model state using larger time-steps than is possible with atialize ocean circulation model¥i@lard et al, 2003 or to
explicit model. The performance of the method is presentecestimate model parameters for example diffusiviti&ga(n-

for two test cases within a barotropic quasi-geostrophic nonmer, 2009 or eddy stresse$-érreira et al.2005.

linear model of the wind-driven double-gyre ocean circula- Given an ocean model and observations the aim of 4D-
tion. The method turns out to be accurate and, in comparisoar is to find an initial state and/or model parameters, such
with the time-mean state computed with an explicit versionthat the observations are “close” to the model trajectory. A
of the model, relatively cheap in computational cost. cost function is formulated which measures the distance of
the model trajectory to the observations. Minimization of
this cost function over the initial conditions (or parameters)
gives the so-called analysis. The minimization procedure re-
quires a gradient, which in general is evaluated using a for-

The ocean has been routinely observed for the past decade\gf"1rd and an adjoint model. Cqmpilers exits'which generate
ctual computer code of an adjoint model given the code of

These observations mainly consist of satellite measurement%1 ; d modelGieri d Kaminskil998. but the f
of sea surface height (TOPEX/POSEIDON), sea surface temt® orwardmo e_((?T-lenng an _amlnslﬂ 9, butt e for-
perature (AVHRR) supplemented by hydrographic data Col_mulauon of an adjoint model is in most cases a nontrivial and
lected from a variety of sources ranging from cruises along!me-consuming process. _ _
sections (WOCE) to drifter and floats (ARGOS). The anal- A direct approach of determining an estimate of the time-
ysis of these observational data provides much informatiorf"€an state of the ocean, is to assimilate the observations into
on the large-scale ocean currents. It is, however, not suffin ocean model and calculate the time-mean state of the re-
cient to fully describe the time-mean ocean circulation due toSUlting analysis. For a data-assimilation method with an ex-
problems in coverage, spatial and/or temporal resolution oP!iCit time-stepping model this has high computational cost
in accuracy. To obtain an accurate analysis of the time-meaffince small time-steps have to be taken due numerical stabil-
ocean circulation, it is therefore necessary to combine thes&Y constraints, such as the CFL-criteridPefyret and Taylor

observations with an ocean model using data-assimilation o+983. Furthermore, a small time-step requires a high tem-

1 Introduction

inverse modeling techniques. poral resolution of the observational data, which may not be

available. Small time-steps also make the estimate sensitive
Correspondence toA. D. Terwisscha van Scheltinga to observational noise and high frequency, small amplitude
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Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.



778 A. D. Terwisscha van Scheltinga and H. A. Dijkstra: Efficient estimation of time-mean states

The 4D-Var method has recently been implemented inim-2.1  Quasi-geostrophic model
plicit time-stepping models where the advantage is that the
adjoint can be constructed directly from the implicit time- Consider a rectangular ocean basin of sizeL having a
stepping scheme, such as the Crank-Nicholson scheme (  constant depttD. The basin is situated on a mid-latituge
wisscha van Scheltinga and Dijkst2005. This new im-  plane with a central latitudé,=45" N and Coriolis param-
plementation has several advantages over variational dat£ter fo=252sin6o, whereS is the rotation rate of the Earth.
assimilation with an explicit model: (i) a larger time-step The meridional variation of the Coriolis parameter at the lat-
can be taken since the size of the time-step is not boundediude o is indicated byBo. The densityp of the water is
by the CFL-criterion, and (i) the method is more accurate constant and the flow is forced at the surface through a wind-
for similar time-steps (Terwisscha van Scheltinga and Dijk- Stress vectol'=zo[t* (x, y), T’ (x, y)]. The governing equa-
stra, 2007). The possibility of taking a large time-step is antions are non-dimensionalized using a horizontal length scale
advantage that we will utilize here for the estimation of the L, @ vertical length scal®, a horizontal velocity scal&, the
time-mean state. advective time scalé /U and a characteristic amplitude of

To be able to use large time steps, one needs a way tthe wind-stress vectotp. The effect of deformations of the
handle the smaller time-scale variability in the observations.0cean-atmosphere interface on the flow is neglected.
This variability can usually be decomposed into statistical The dimensionless barotropic quasi-geostrophic model of
modes Ghil et al, 2002 using statistical techniques for ex- the flow for the vertical component of the vorticity, and
ample, Multi-channel Singular Spectrum Analysis (M-SSA); the geostrophic streamfunctignis (Pedlosky 1987)
these techniques aim at enhancing the signal-to-noise. Thgd d ] 12 ary  art
observations can then be reconstructed using only the MFE Tt v?y][{ +hyl=ReTV {J”“(ﬁ B Ty>’ (12)
SSA dominant modes, or when required, only those with fre-
qulentﬂgs within acert?infrtiquencyfb.ancli'. o dels i dat ¢ = V2y, (1b)

n this paper we explore the use of implicit models in data- . " .
assimilat?onpand prorE)ose an efficient egtimation method forWhere the horizontal velocities are giveniby-—3dy/dy and

the time-mean state in an ocean model under given observa{)—zawax' The parameters in Eq1g are the Reynolds

tions. The approach consists of two building blocks: numbgrRe, the plangtary vorticity gradient paramefeand
the wind-stress forcing strength. These parameters are
i) a method to pre-process the observations prior to datadefined as:
assimilation, i.e. a data-handling procedure that usesR UL . ﬂoLz_ ol 5
multi-channel spectrum analysis (MSSA) to enhance™¢ = Ay’ p= U o YT oDU2 @

the signal-to-noise ratio and reconstruct the observaypere, is the gravitational acceleration ard; is the lateral

tions such that only the dominant modes and relevantyqtion coefficient. When the horizontal velocity scaleis
time-scales are assimilated; and based on a Sverdrup balance of the flow, i.e.,

ii) the 4D-Var method using an implicit time-stepping ¢y — 0 . ©)
scheme, which allows us to take relatively large time- pDpoL
steps. it follows thata, =g and there are only two free parameters

. i ) _(e.g.,Re andp).
The method will be tested using the barotropic quasi- we assume no-slip conditions on the east-west boundaries

geostrophic model of the wind-driven ocean circulation asand slip on the north-south boundaries. The boundary condi-
presented in Sect. 2. We will consider both a case of ex+jons are therefore given by

ternally forced variability (Sect. 3.1) and a case of internal

variability (Sect. 3.2), the latter arising through Hopf bifur- x=0,x=1: = =0, (4a)

cations. For both cases, the estimation method is compared

with a direct approach of estimating the time-mean state us- y=0y=1: ¥=r=0 (4D)

ing an explicit version of the model. The wind-stress forcing is prescribed as the sum of a sym-
metric steady wind forcing with added time-dependent com-
ponents with different frequencies and amplitudes, i.e.,

2 Model and methods 1

™ (x, y) = — co¥2r
In this section we will first provide (Sect. 2.1) the model of o) 21 ey

: . . ) g o : ‘
the wind-driven ocean circulation which is used in this study. L a0 cos(my) + az(1) cos(3ry)

Next, we provide a basic overview of the 4D-Var method T 3

(Sect. 2.2) followed by a detailed discussion of the esti- az(1) as(t)

mation method for the time-mean state in the ocean model + A costdmy) + 5 cos5ry) - (58)
(Sect. 2.3). (x,y) =0. (5b)
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Table 1. Standard values of the parameters for the barotropic quasi-yalue§ has been chosen (Talijethat are similar to those
geostrophic ocean model in the steady flow regime. in (Dijkstra and Katsman1997) and for these parame-
ters, o, =f=2.8x10%. For the implicit time integration the
second-order Crank-Nicholson scheme is used, while for the

explicit time integration a second order Adams-Bashforth

Parameter Value

L 1.0x10° m scheme is used.
U 71x10% m
D 7.0x10? m 2.2 Variational data-assimilation
Bo 2.0x10°11  (msy 1
fo 1.0x1074 s Suppose the initial condition of the background mao®ro)
g 9.8 ms 2 is given. The analysis is the model trajectory that simultane-
P 1.0x10° kgm—3 ously minimizes the distance to the initial backgrousft o)
70 1.0x107!  Pa and the observationy; : i=0, ---, N—1}. This is an opti-
I 360 days mization problem, which in the incremental 4D-Var formu-
Pl* 90 days lation (Courtier et al, 1994 is stated as:
2
PX 30 days a ;
3 sw® = ) 7
Py 7 days w rm}n]( w), (73)
_ _ N-1
The amplitudes; are given by: J(Sw) = Sw B sw + Z dIRd;, (7b)
, i=0
7240 2nt
a;(t) = 60 Sm(?)- (6)
1
di = yi — HiM (t;, 10)(w” (10)) + HiM (1, t0)w. (7¢)

where P; is the dimensionless period of the amplitude and
7;€[0, 1] is a control parameter. The values for the dimen- In above equations is the cost function which mea-
sional periodP*=LP;/U are given in Tablel; a1(r) hasa  Sures the distance to the observations and the initial con-
period of one yearg(r) a period of three monthsiz(r) a ditions, sw“ is the optimal increment on the initial back-
period of a month anda(r) a period of a week. The ampli- groundw” (1) state and; is the departure of the model tra-
tude and the spatial scale of the time-dependent wind-streggctory from observatioty;. The operators/ (i, 7o) and H;
components; () decrease witt. are the evolution operator and the observation operator with
For the parameters as in Tableand symmetric forc- M (i, fo) andH; their linearizations around the background
ing (z;=0, i=1, ..., 4), (Dijkstra and Katsmar1997) showed trajectoryw”(z;). The matrice®8 andR; are the covariance
that several different flow regimes exist whea is varied. matrices for the background errors and observational errors.
For Re<30, the quasi-geostrophic model has one uniqueGiven an optimumsw* of Eq. (73 the analysisw*(z) is
stable steady state. The streamfunctipnof this steady  given by:
state is anti-symmetric with respect to the mid-axis of the b a
basin. Two asymmetric stable steady-state solutions, oné (1) = M (&, to) (w”(10) + 5w™). (®)
with a downward jet-displacement and the jet-up solution  The method used for the solution of the minimization

exist for 30<Re<52. NearRe=52 both asymmetric states problem described here needs the gradfédt which for
become unstable due to the occurrence of Hopf bifurcationsgq. (73 is given by:

for 52< Re <74 stable periodic orbits exist. The solutions be-
come quasi-periodic foRe>74 and irregular for higher val- N1 T o1
ues of Re; the route to chaos is through a homoclinic orbit ¥/ = _ M. 10)"H; R; "d;. ©)
(Simonnet et a).2005. i=0
With this model we will test our time-mean estimation For the explicit model the procedure is to evaluate the cost
method presented in Sect. 2.3 for internal and externally infunction by using explicit time-stepping, while the gradient
duced variability. For the former we will takBe>74 and  is evaluated using the adjoint modl(z;, 10)” to integrate
7;=0,i=1, ...,4, i.e. the quasi-periodic regime described backward in time. For 4D-Var with implicit time-stepping,
above. For the latter we takRe=50 andr;=1, i=1, ..., 4, the construction of the adjoint model is ea$gifwisscha van
the steady regime where we induce variability through theScheltinga and Dijkstra2005, since the adjoint model is
time-dependent components of the wind stress. directly available from the Newton-Raphson method used
The equations Eq.16) and boundary conditions Eg4)(  in the Crank-Nicholson method. Furthermore, the implicit
are spatially discretized using a control-volume method onimplementation also has the advantage that the time-step is
an equidistantv x M grid. A standard set of parameter not limited by numerical stability and is capable of finding
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into 3 subintervals t=3), each with four pointsn=4).
For every interval the background trajectany (¢;) (solid),
- X the optimal incrementv® (arrows) and the analysis“(z;)
L \T\\/\/ (dashed) are shown. The background on the first interval is
l\/x given. For the other intervals, the background is calculated
x* from the analysis on the previous interval. On each interval
the minimization problem is solved. Due to the dependence
- of the cost function on the background, the increment and the
observations, the initial and the final value of the cost func-
tion will vary over the subintervals (Fidb).

Iy, l1,, TTH(WO(E) T, TH(W(E) 1,

1* interval 2" interval 3 interval
; " " :

te oty byt ottty te bty . . )
time () 2.3 Time-mean state estimation

To fully utilize the advantage of taking a large time step, we
only want to assimilate those statistical modes of the obser-
vations which explain most of the variance seen in the ob-
servational data. These modes are then separated into sev-
eral frequency bands, ordered from low to higher frequen-
cies. For large time steps we only assimilate the modes in
the low frequency band, while for smaller time steps we will
retain the low frequency modes but include higher frequen-
cies. The underlying assumption is that for large time steps
1 5 3 we can quickly estimate a time-mean state based on only the
interval (b) low frequency variability in the observations, while the re-
finement of the time-mean state due to the assimilation of
high frequency variability is expected to be relatively small.
To illustrate the approach graphically, a hypothetical ob-

log J

Fig. 1. Sketch of the 4D-Var method, where an assin};lilation in-
terval has been divided into three subintervala) || H (w” (7;)||2 . . NP ) o
and| H (w“(t;) |2, the Lo-norm of the projection of the background se_rva_\tlonal tl_me-serles is shown in FR.@" The variability of .
wh () (solid) and analysiav®(;) (dashes) on the observations this tlm_e series can be d_ecomposed into several modes,.as is
space; thely-norm of the observationg (crosses) and the optimal shown in Fig.2b, each with a different frequency. From this
incrementssw® (arrows). (b) the initial (solid) and final (dashed) Picture it becomes clear that to produce an accurate analy-
value of the cost function. sis, each mode of variability can be handled with a different
time step during assimilation. The low-frequency variability
can be assimilated with a much larger time step than the high
an accurate analysis for large time steps (Terwisscha vafequency variability. For large time steps (FRg) we only
Scheltinga and Dijkstra, 2007). o assimilate the low frequency mode, while for smaller time
The minimization problem for the cost functidris solved  steps we take both the low and medium frequency variabil-
using a limited memory quasi-Newton conjugate gradientity jnto account. Each assimilation of reconstructed obser-
method. This method terminates successfully if all of theyations produces an estimate for the time-mean state, which
following conditions on the convergence of the cost function, js syccessively improved by adding more higher frequency

increment and gradient are met: components, while simultaneously reducing the size of the
_ time step.
-1 ql I
z J1 zJ = 6’1’/(21 +1J l)’z (102) To obtain the statistical mode decomposition in the obser-
[6w'™" —dw'|| <€y (L4 [Sw'[]), (10b)  vations, we use the M-SSA method applied on the leading
VI < 6’11/3(1 17, (10c) principle components (PC) of the observatioxautard and

Ghil, 1989. After the leading M-SSA modes have been cal-
where [ is the iteration index of the conjugate gradient culated the observations are reconstructed. Depending on the
method and;,, the optimality tolerance. size of the time step, this reconstruction will be based on the

For time-series with many observations in the time- modes in only one or in more frequency bands.
domain, i.e. largeV, it is more practical to divide the large The algorithm for the time-mean estimation hence consists
time series intaz smaller (sub-)intervals, each wittpoints.  of two parts: (i) a data-handling procedure, which produces
The observation in each sub-interval are then assimilated usseveral reconstructions of the observations from the M-SSA
ing the analysis of the previous one. An example of this ismodes; (ii) iterative assimilation of the reconstructed obser-
presented in Figl, where the observations are shown on anvations using 4D-Var. The steps in the data-handling proce-
assimilation interval of 12 points. This interval is divided dure are the following:

Nonlin. Processes Geophys., 14, 7788 2007 www.nonlin-processes-geophys.net/14/777/2007/



A. D. Terwisscha van Scheltinga and H. A. Dijkstra: Efficient estimation of time-mean states 781

1. Calculate the mean from the observationg; in the
intervalro<t; <t,. If a trend is present in the data, then
this trend must be removed before calculating the mean.

2. Calculate theF leading M-SSA modes (see Appendix),
i.e. those who explain most of the spatial-temporal vari-
ance. The number of modds depends on how much
of the variance should be explained (usually, 90% or
more). Note that this is highly dependent on the quality
of the observations, but in practidé is not large, say
10-20.

norm

3. Separate the different modes of variability, i.e., divide time €))
the F modes into sets of modes; with each set rep-
resenting a band of frequencies (e.g., seasonal, interan-
nual, decadal). The setS; must satisfy:

norm
b
N E
~
) N
’ P
S

KinKe=9, j#k (11a)
K \ \
UK =Kr. (11b) / e
j=1

where/Cg contains theF leading modes. The sets are
ordered from low to high frequencies bands.

4. Reconstruct the observations as follows: time (b)

Ki=49, (12a)
K;j=K;j-1UK;j, (12b)
yij =¥+ Rg (1), (12c)

norm

wherey-l.’ is thejth reconstruction based on the modes
in Iﬁj, and Ry (t;) is the reconstruction of the devia-
J

tions from the mean using the modeskin. Note that
the first reconstruction of the observational time-series
is the meany. For the estimation of the mean we will
iterate inj, or equivalently, over the reconstructed ob-
servationsy/. Since the sets were ordered from low to
high frequenciesl,ﬁj contains all the frequencies up to Fig. 2. Sketch of the time-mean estimatio(a) the observational

a certain frequency band. time-series(b) three modes of variability present in the time-series:
the low frequency mode (dotted), medium frequency mode (dashed)
and the high frequency mode (solidk) three reconstructions of

For a fixed value ofj the serieSy{ will be assimilated his i o based on the low de (dotted) | q
using 4D-Var and from the resulting analysis the time-mean''S ime-series based on the low frequency mode (dotted), low an
medium frequency modes (dashed) and low, medium and high fre-

state is estimated. For eagtwe have to choose a time-step .

. : . . uency modes (solid).
At and size of the (sub-)intervals and point per (sub—)lntervalq Y (solid)
(see Figl). The steps in this procedure are as follows:

time (c)

2. Set the number of subintervals; and the number of
points per subinterval; (Fig. 1). Bothm; andn; will
vary with the size of the time stefy;, since the follow-

1. Choose a time stept;, whereAt;<At;_1. Here the
choice of At; depends on the variability present in the

reconstructed observation$. It is necessary to have a ing must hold:

good temporal resolution in order to produce an accu-

rate analysis and estimate for the time-mean state. The 4., = mjn;At;, (13)
size of the time-step must be smaller than the period of

the variability present in thg}{. wheretota is the length of the time interval. Note that it
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is not necessary to use all the available (reconstructed)
observations. Depending on the choicenof, n; and
At; only the observations at somewill be used.

3. Calculate an estimate for the time-mean state by taking
the average over the calculated analysis.

During an iteration overj the setup of the assimilation
(mj, nj and At;) and the assimilated observations;)
change. In the remainder of this paper, a steady state will
be used as the initial background for each iterafiolVe do
not use the analyses of previous iterations as the background
since it was found difficult to implement, difficult to use in
combination with the varying setup of the assimilation and
it did not yield significantly better results for the test cases
presented below.

3 Results

The methodology will be applied to the model presented in
Sect. 2.1, using the parameters from Teb#nd a model res-
olution of 60x40 gridpoints. We will test the new time-mean
estimation method for two cases. In the first case (Sect. 3.1)
we chooseRe=50 where the equilibrium flow is steady un-
der symmetric time-independent wind forcing. External vari-
ability is introduced through the time-dependent components
of the wind stress by taking =1 for all i in Eg. ). In the
second case (Sect. 3.2) we taRe=80 such that the equi-
librium flow is irregular due to internal instabilities (arising
through Hopf bifurcations) andg=0 for all i in Eq. 6) such
that there is no externally induced variability. In all the re-
sults below, for convenience we will use dimensional values
of time and time step but we will keep the notatioandAr.

t [years] (b)

3.1 Externally induced variability

First a 10 year model run was performed R¢=50 with a
time stepAr=3 h. The wind-stress forcing is given by E§) (
with ;=1 for all i and the model run is started from the jet-
down steady-state solution 82=50. In the Figs3a—b the
dimensionless kinetic energykin and the asymmetry of the
streamfunctio\ W defined by:

Ay XY + min(y)

are plotted versus time. The kinetic energy and the asymme-
try of the streamfunction for the jet-down steady-state solu-
(a) the basin integrated kinetic enerd;n; (b) the asymmetry of _tlon have also been plotted (dashed). In both the Fa.ng’

the streamfunctiony’; (c) the time-mean of the streamfunction over it can be seen that after a fewlyears the streamfunctlon f“%C“,"
the last five years, the contours are with respect to an absolute maates around the steady state in a regular fashion; the variabil-
imum of ¢ =2.2; and(d) the difference between this time-mean ity Of this signal has a dominant period of one year (by con-
state and the jet-down steady-state, the contours are with respect gfruction). In Fig.3c, the time-mean of the streamfunction
an absolute maximum af=0.055. over these five years is shown. The difference of this time-
mean state and the jet-down steady-state solution is plotted
in Fig. 3d. The time-mean state has also a jet-down structure

(14)

x )

Fig. 3. Overview of the model run aRe=50 andr;=1 for all i:

Nonlin. Processes Geophys., 14, 7788 2007 www.nonlin-processes-geophys.net/14/777/2007/
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and the difference pattern in Figd shows the signature of 4.8x10%T
the P-mode found infijkstra and Katsmal997). P

From this simulation, the last 5 years were used for the 4 5x10*F" A
generation of the observations. All valugson the 66«40 __\_,\/_/\/w/ 1
grid were taken as the observations. After subtracting the  , 4, ;4L — ~— J\’—/ ]
time-mean state, the 20 leading EOFs and PCs were calcu- I ]
lated. Since we use unperturbed observations generated by 4 2x10%L b
a model, 100% of the variance in the observations could be i ]
explained. Based on these principle components, the leading  , .., ‘ ‘ ‘ ‘ ]
20 M-SSA modes were calc_ulated, which in total _accounted 00 02 04 06 08 10
for more than 90% of the variance. The leading pair of modes t [years] @
has a frequency of once a year and higher frequencies are less
dominant. The 20 M-SSA modes were separated into three ~ 4-8%10°[
frequency bands: low frequencies (period of a year or more), . L.

a mid-frequency range (period of a quarter to a year) and the 4.6x107¢
higher frequency range (periods of a quarter or less). [

From these frequency bands three reconstructions of the 4-4x10"f
observations were made. The first reconstruction was based I ]
on the low frequency band, the second and third by adding ~ 4.2x10*F ]
the mid-frequencies and the high frequencies, successively. W 1
The time stepAr;, number of subintervals:; and the per 4.0x10 ‘ ‘ ‘ ‘
subintervak ; were chosen as: 00 02 04 06 08 10

t [years] (b)
24 4.8x10*

1, = m, (15a.)

mj = 3_2(j—1)’ (15h) 4.6><WO47

nj =35, (15¢) A

4.4x10*

where the time step¢; is in days andje{1, 3} corresponds —
with each of the reconstructions. For the cgse) only the 42x10%F .
time-mean state is assimilated. Using this setup we will only i ]

assimilate the first 360 days of our set of observations. 4.0x10%L ‘ ‘ ‘ ‘

For the optimality tolerance,, the value of 102 has been 0.0 0.2 0.4 06 0.8 1.0
chosen. This ensures that the solutions are accurate and cal- t [yeors] (©)
culated efficiently: a smaller value does not give significantly 4.8%x10%[
more accurate solutions (in this case), but does significantly [
increase the computational cost. The covariance matrices  4.6x10" ¢
have been chosen as the identity matrix,Be= R;=I. For -
the moment all the components of the wind-stress forcing are  4.4x10*f
included for every reconstruction, i.e. for each case,=1 I
for all i. The initial background will always be taken as the 4.92x10*F ]
jet-down steady-state solution. I ]

For each value of, the basin integrated kinetic energy of 4.0x10*[ ‘ ‘ ‘ ‘
the background and the analysis is shown in Bigln each 0.0 0.2 0.4 0.6 0.8 1.0
panel, the background trajectory is shown as the thin solid t [years] )

curve, the analysis trajectory as the thick solid curve and the

observations as the dashed curve. In B@. only the ob-  Fig. 4. Basin integrated kinetic energin of the analyses (thick
servational time-mean was assimilated with a time step ofand solid) and background (thin and solid) plotted against the ki-
24 days (=0). From this figure it is clear that the analysis netic energy of the unreconstructed observations for several values
trajectory is far from the observations; it stays close to theof j: (&) j=0, assimilation of only the time-mean observations with
time-mean state. Foi=1 (Fig. 4b) the low-frequency vari- ~ Ar=24 days{b) j=1, assimilation of the low frequency variability
ability is assimilated with a time step afr=12 days. Here With Ar=12 days{(c) j=2, assimilation of the lower en mid-range
the method finds an analysis which is closer to the observafféduency variability withAs=6 days; andd) j=3, assimilation of
tion than the background. For the reconstruction based off! "€ leading modes fo/=3 days.

the low-to-mid frequencies (Figic; Ar=6 days) and all the
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0.100F ] frequencies of the modes present in the reconstruction of the
i ] observations are included, i.e., fp=0 the time-mean obser-

vations are assimilated with the steady wind stress( for

all i). For j=1, the low frequencies are included in the re-

construction of the observations and only the low frequency

component{;=1, others zero) is included in the wind forc-

ing. The resulting value ad ; is plotted as the dashed curve

, J in Fig. 5. For j=0, the estimated time-mean state is bet-

0.001 ‘ ‘ ter than calculated with all the wind-stress components. For
0 ] 2 3 j>0 the differences become very small because the annual

] variability is the dominant mode of variability in the obser-
vations.

<70.010}

Fig. 5. Difference between the time-mean state of the analysis and3.2  Internal variability

the observational time-mea#;, as defined by Eq16). The solid

curve represents the case where all the wind-stress forcing compd-or Re=80 and a steady wind-stress$=0 for all i), a model

nents were used for eagh the dashed curve is the case in which trajectory was calculated witht=3 h starting from the un-

there is a matching of modes and wind-stress forcing, and the dottedtaple jet-up steady state. In Figa—b, the dimensionless

curve shows the result for the explicit model. basin integrated kinetic energy and the asymmetry of the
streamfunctionAW of this trajectory are shown. For the

e . first four years, the trajectory stays very close to the unstable
modes (Figad; Ar=3 days) the analysis and the background steady state but it becomes quasi-periodic over the next 8-9

move closer to the observations, and the assimilation of these . : -
. : ; . years. During the last nine years, two types of variability can
observations improves the quality of the analysis.

In Fig. 4b—d some jumps in the curves for the background be seen, one with a period of about 5 years and the second

and analysis can be seen. These jumps occur between tr\{gth a period of about 50 days having a smaller amplitude

. ; . as the first. The trajectory circles around the unstable jet-up
subintervals (see Fidl) and become smaller for larggr steady state but has a slightly lower mean kinetic energy. The
(smallerAr) and inclusion of higher frequency modes. Al- y gnhty 9y-

: ) . time-mean streamfunction over the last five years is shown in
though the method is able to find an analysis close to the re-. : . .

. . Fig.6c. The time-mean state has a jet-up structure and differs
constructed observations, the model cannot exactly fit these

) . . ; Substantially from the unstable jet-up solution (Fdd). The
observations. As a result, the analysis trajectory will be suf- . . .
. . . -~ ~ . values of the streamfunction on all the grid point over the last
ficiently close to the observations over the interval, but it will _. . : )
: . . . five years of the integration were taken as the observations.
start to deviate from the observations in the trailing interval.

As this part of the trajectory is used as the background for _After subtraction of the t|me-me_an, the 20 leading prin-
. S : : ciple components of the observations were calculated. As
the next interval, these errors will introduce the jumps in the.

) . 0 : i
background and analysis. For smaler the jumps become in t.he previous section 100% of the variance could be ex
less prominent. plained, since we use perfect observations. A total of 20 M-

In Fig. 5 the time-mean of the analyses is compared with gfsﬁlgszdgg Vrz%gecsaltsyc!a;?ﬁr;n\jvn;r?zg:r:ri];ﬂﬁ (t:ﬁ;nﬁgt]epn;isr'
the "true” time-mean state, the difference defined by: with a period of 100 days, the second pair with a period of 50
Aj = Wésf Viuell2, (16) days. The other modes have smaller periods and amplitudes.

‘ These modes were divided into frequency bands accordingly.
whereyr is the estimate of the time-mean calculated from The same assimilation setup as in the previous subsec-
the available analyses at iterateand ¥ e the time-mean  tion was used, i.e., the time steps;, the number of subin-
of the observations (shown in Fi§c). The solid curve in  tervalsm; and the points per subinterval, are given by
Fig 5 showsA; for the cases presented in Fig.Clearly for Eqg. 15. The initial background was taken as the unstable
smallerAtr and largerj, the time-mean state of the analysis jet-up steady state and only the first year of the five year pe-
converges to the observational time-mean state. This is exriod is assimilated. The trajectories of the background and
pected, since we use unperturbed observations and use all tlealysis forall values of j are shown in Fig7. For refer-
available observations. The result also indicates that only @&nce, the observations are also shown in the same figure as
few statistical modes need to be included here for a reasorthe dashed curve.
ably accurate estimate of the time-mean state. When assimilating only the time-mean observatigrs®)

To look at the effect of the wind-stress forcing field, the with a time step of 24 days, the initial background is far from
same calculations were performed as above, but now théhe observations (Figza). The assimilation, however, finds
wind forcing applied to the model is also varying wigh an analysis that is much closer to the observations. This is
Only those components of the wind stress that match with thealso seen for other values ¢f After the first interval both
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@ Fig. 7. Basin integrated kinetic energy of the analyses (thick and
Fig. 6. Overview of the model run ate=80 andr; =0 for all i: (a) solid) and background (thin and solid) plotted against the kinetic en-
the basin integrated kinetic enerdiin; (b) the asymmetry of the ~ €rgy of the unreconstructed observations for several valugs(e)
streamfunctiony; (c) the mean of the streamfunction over the last /=0, assimilation of only the time-mean observations whth-=24
five years, the contours are with respect to an absolute maximun§lays; (b) j=1, assimilation of the low frequency variability with
of ¥=2.5; and(d) the difference of this mean with respect to the Ar=12 days;(c) j=2, assimilation of the lower en mid-range fre-
unstable jet-up steady-stateRt=80, the contours are with respect duency variability withAr=6 days; andd) j=3, assimilation of all
to an absolute maximum @f=0.45. the leading modes fokr=3 days.
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1.00F

ratio of accuracies

Fig. 8. Difference between the time-mean state of the analysis
(drawn curve) and the observational time-medn, as defined by
Eq. (16). The dotted curve is the result from the computation with
the explicit model.

the background and analysis are close to the observations but
they do not show the 50 day period, when compared with
the observations. Increasing the value jofi.e. taking a
smaller time step and taking more statistical modes into ac- .
count, leads to a smaller difference with the observations. J ()
For j=1 (Fig. 7b) both trajectories fit the observations and

show a small 100 day oscillation. Fge=2 (Fig. 7c) and g 9 (a)The ratio of the difference between estimated time-mean
Jj=3 (Fig. 7d) the analysis and background also show the 50state using the implicit method and the true time-mean state and
day period. the same difference as calculated by the explicit metifoyithe
The estimate of the time-mean state as calculated from theatio of the processor times used for the implicit estimation and for
analyses is compared with the time-mean state from the obthe explicit estimation. In both figures the results for the external
servations in Fig8. For smaller time steps and more modes variability with constant forcing«; =1 for all i and j) are drawn
present in the reconstruction, the estimate becomes more ag0lid, for the external variability with variable forcing (valueswmf
curate. Forj=2 andj=3 the differences with the observa- variable with) are drawn dotted and for the internal variability the
tional time-mean state are practically the same. Hence takCurves are drawn dashed.
ing a time step of 3 days and taking a reconstruction based
on 20 M-SSA modes does not give an improvement when
compared to the result for a time step of 6 days and only the First consider the externally induced variability. With all
dominant two pairs of M-SSA modes. For an accurate estithe time-dependent components in the wind-stresg(),
mate of the time-mean state it is sufficient to take only thethe 4D-Var analysis has been calculated with the explicit
dominant statistical modes in the observations into account.model. From this analysis, the time-mean state is calculated
and the difference with the time-mean state from the obser-
3.3 Comparison with the estimate from the explicit model vations is shown as the dotted curve in Fig.The explicit
assimilation is able to find a better estimate for the time-mean
To see how much advantage there is from the implicitstate when compared with the implicit estimation method for
methoo_lology, we compare the results above with an es_tlmat9:O’ 1 and j=2. For j=3, i.e., for At=3 days in the im-
of the time-mean state calculated over an analysis trajectoryicit method and observations reconstructed with 20 M-SSA
resulting from a data-assimilation with the explicit model modes, the implicit estimation method performs better than
using the second order Adams-Bashforth scheme. We Wilkhe explicit estimation method. For the case of internal vari-
compare both the accuracy of the estimated time-mean statgy)jjity, the difference between the estimate of the time-mean
and the computational cost. For both the externally inducedtz|cylated using the explicit model and true time-mean state
varlab|llty and the mt_err_wal varlaplhty the mc_)d_el generate_d is shown as the dotted curve in Fg. Again, the implicit
observations are assimilated using the explicit model usingynethod is more accurate when both dominant pairs of modes

the following setup: 8 points per subinterval aBeRi=l (=2 3) are used in the reconstruction of the observations.
and a time step oAr=3h.

ratio of processor time

The implicit estimation and explicit estimation methods
are compared both on accuracy and efficiency in Bigln
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Fig. 9a, the difference between estimated time-mean state We admit that the model problem used here, with the ide-
using the implicit method and the true time-mean state haslized observations and identity covariance matrices, is rel-
been divided by the same difference as calculated by the exatively simple when compared to the estimation of a time-
plicit method. If this ratio is larger (smaller) than 1, then the mean state within a sophisticated ocean model and realistic
explicit estimation method is more (less) accurate. The dif-observational data. The application of this estimation method
ferent curves represent again the different cases, with drawio realistic problems is dependent on the quality and quan-
the external variability with constant forcing having a solid tity of the observational data and the availability of implicit
linestyle, external variability with variable forcing a dotted ocean general circulation models. The results presented here
linestyle and the dashed curve represents the case of internate, however, motivating to further develop implicit ocean
variability. For a time step of 6 days or smaller and with only models and corresponding assimilation and estimation meth-
the dominant statistical modes present in the reconstructiomds.

the implicit estimation method performs better than the di-

rect approach using an explicit model. In Féln, the ratio  AcknowledgementsThis work was supported by the Dutch
of the processor times used for the implicit estimation andTechnology Foundation (STW) within the project GWI.5798.

for the explicit estimation are shown and clearly the explicit

approach is up to a factor 40 more expensive. The implicit esEdited by: J. Kurths

timation approach is much cheaper because a larger time stdgeviewed by: one anonymous referee

is used, reducing the number of subintervals and the number

of minimizations needed to calculate the analysis.
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